pH-sensitive micelles for targeted drug delivery prepared using a novel membrane contactor method.

نویسندگان

  • Abdallah Laouini
  • Konstantinos P Koutroumanis
  • Catherine Charcosset
  • Stella Georgiadou
  • Hatem Fessi
  • Richard G Holdich
  • Goran T Vladisavljević
چکیده

A novel membrane contactor method was used to produce size-controlled poly(ethylene glycol)-b-polycaprolactone (PEG-PCL) copolymer micelles composed of diblock copolymers with different average molecular weights, Mn (9200 or 10,400 Da) and hydrophilic fractions, f (0.67 or 0.59). By injecting 570 L m(-2) h(-1) of the organic phase (a 1 mg mL(-1) solution of PEG-PCL in tetrahydrofuran) through a microengineered nickel membrane with a hexagonal pore array and 200 μm pore spacing into deionized water agitated at 700 rpm, the micelle size linearly increased from 92 nm for a 5-μm pore size to 165 nm for a 40-μm pore size. The micelle size was finely tuned by the agitation rate, transmembrane flux and aqueous to organic phase ratio. An encapsulation efficiency of 89% and a drug loading of ~75% (w/w) were achieved when a hydrophobic drug (vitamin E) was entrapped within the micelles, as determined by ultracentrifugation method. The drug-loaded micelles had a mean size of 146 ± 7 nm, a polydispersity index of 0.09 ± 0.01, and a ζ potential of -19.5 ± 0.2 mV. When drug-loaded micelles where stored for 50 h, a pH sensitive drug release was achieved and a maximum amount of vitamin E (23%) was released at the pH of 1.9. When a pH-sensitive hydrazone bond was incorporated between PEG and PCL blocks, no significant change in micelle size was observed at the same micellization conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery

Objective(s): The main aim of current research was to develop a novel magnetically responsive hydrogel by radical polymerization of carboxymethyl cellulose (CMC) on acryl amide (Am) using N,N'-methylene bis acrylamide  (MBA)  as a crosslinking agent, potassium persulfate (KPS) as a free radical initiator, and  magnetic montmorillonite ( mMT)  nanoclay as nano-...

متن کامل

Preparation of pH Sensitive Pluronic-Docetaxel Conjugate Micelles to Balance the Stability and Controlled Release Issues

A novel polymer-drug conjugate was prepared by the chemical reaction between the copolymer Pluronic P123 and the docetaxel via a pH sensitive hydrazone bond. These pluronic P123-docetaxel (DTX) conjugates (P123-DTX) could form the stable drug-loaded materials that can self-assemble into the defined nano-micelles in aqueous solution because of their obvious amphiphilic property and low critical ...

متن کامل

A Novel Composite Membrane for pH Responsive Permeation

Objective(s) In this study, a kind of pH sensitive composite membrane was prepared and drug permeation through it was investigated in terms of pH. Rationale of this study originated from the fact that a pH change which may be a result of a disease state in the body can trigger drug release. Materials and Methods  Here, a kind of pH sensitive composite membrane containing different nanoparticle ...

متن کامل

Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR). To overcome multidrug resistance (MDR) and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep). First, the polymers poly(l-histidine)-coupled polyethylene glycol-2000 (PHIS-PEG2000) and 7pep-modified 1,2-...

متن کامل

Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity

Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 5 18  شماره 

صفحات  -

تاریخ انتشار 2013